The Synchronous Blog

A blog about reactive programming languages.

Posts Tagged ‘docs

PhD thesis preprint: “Safe System-level Concurrency on Resource-Constrained Nodes with Céu”

with 2 comments

I’m about to reach the day of my PhD defense.

The preprint for my thesis, entitled “Safe System-level Concurrency on Resource-Constrained Nodes with Céu”, can be downloaded here.

(BTW, we had a paper accepted for SenSys this year in Rome! :)

Written by francisco

August 24, 2013 at 12:12 pm

Posted in News, Reactive Languages

Tagged with , ,

“Céu: Embedded, Safe, and Reactive Programming”

with one comment

We have published a technical report entitled “Céu: Embedded, Safe, and Reactive Programming”.

Enjoy the reading!

Abstract:

Céu is a programming language that unifies the features found in dataflow and imperative synchronous reactive languages, offering a high-level and safe alternative to event-driven and multithreaded systems for embedded systems.

Céu supports concurrent lines of execution that run in time steps and are allowed to share variables. However, the synchronous and static nature of Céu enables a compile time analysis that can enforce deterministic and memory-safe programs.

Céu also introduces first-class support for “wall-clock” time (i.e. time from the real world), and offers seamless integration with C and simulation of programs in the language itself.

The Céu compiler generates single-threaded code comparable to handcrafted C programs in terms of size and portability.

Table of Contents:

  1. Introduction
  2. The Language Céu
    1. Parallel compositions
    2. Internal events & Dataflow support
    3. Wall-clock time
    4. Integration with C
    5. Bounded execution
    6. Determinism
    7. Asynchronous execution
    8. Simulation in Céu
    9. GALS execution
  3. Demo applications
    1. WSN ring
    2. Arduino ship game
    3. SDL game simulation
  4. Implementation of Céu
    1. Temporal analysis
    2. Memory layout
    3. Gate allocation
    4. Code generation
    5. Reactive execution
    6. Evaluation
  5. Related work
    1. Synchronous model
    2. Asynchronous model
  6. Conclusion